当我们网购时,我们肯定希望有一个贴近现实的购物体验,也就是说能够全方位的看清楚产品的细节。而分辨率高的大图像能够对商品进行更加详细的介绍,这真的可以改变顾客的购物体验,让顾客有个特别棒的购物之旅。idealo.de是欧洲领先的比价网站,也是德国电子商务市场最大的门户网站之一,在此基础上,我们希望能够在此基础上为用户提供一个用户友好、有吸引力的购物平台。在这里,我们利用深度学习来评估数百万酒店图像的美学层次和技术质量,另外,那些没有任何信息的、特别难看的小的产品图像对我们来说是无效的,因此需要想办法解决。购物网站上并不是所有的商店都能为顾客提供高质量的图像,相反,商家提供的图像特别小、分辨率特别低、质量也很低。为了向用户展示高质量的高分辨率图像,我们基于年的论文《图像超分辨率的RDN网络》,训练了一个特别先进的卷积神经网络。我们的目标很简单:拍摄一些特别小的图像,然后就像使用放大镜一样,对图像进行放大,并且还要保持高分辨率。本文对实现这一目标做了详细介绍,另外,具体实现的细节,请查看GitHub。总概与大多数深度学习项目一样,我们的深度学习项目主要有四个步骤:1.回顾前人对该项目所做的贡献。2.实施一个或多个解决方案,然后比较预先训练的版本。3.获取数据,训练并测试模型。4.针对训练和验证结果对模型进行改进和优化。具体来说,本文主要有以下几方面的内容:1.介绍模型训练的配置,如何评估模型的性能2.查看早期训练和测试结果,了解从哪方面进行改进。3.指出后续需要探索的方向。训练与以往“标准”的监督深度学习任务不同,我们这个“放大镜”深度学习模型输出的不仅仅是类标签或一个分数,而是一整幅图像。这就意味着训练过程以及评估会跟以往略有不同,我们要输出的是原始高分辨率图像,为了更好的对模型进行评估,我们需要一种测量缩放输出图像“质量”的方法,该方法更详细的优缺点将在后面进一步做详细阐释。损失函数损失函数是用来评估神经网络的性能究竟如何,这个有很多方法可以评估。这个问题的本质为大家留下了创造力空间,如有些聪明的人会用高级特征和对抗网络。对于第一次迭代,我们使用标准方法:网络的超分辨率(SR)输出和高分辨率输出(HR)之间的像素均方差(MSE)。评估我们用峰值信噪比(PSNR)来评估输出图像的质量,峰值信噪比是基于两个图像之间的像素均方差(MSE)。由于峰值信噪比是最常用的评估输出图像质量的方法,因此我们也使用这一评估标准,以便将本文模型与其他模型作比较。开始我们在p2.xlargeAWSEC2实例上进行训练,直到验证损失函数收敛,训练结束,这大概需要90个周期(一个周期24小时),然后使用Tensorboard跟踪训练数据集及验证数据集的损失函数和PSNR值。90个训练时期的Tensorboard图如上图所示,左上角为在每个周期结束时,反向传播到神经网络上的训练损失函数。右上角为跟踪泛化性能的非训练数据及的损失。左下角为训练数据集的PSNR值。右下角为验证数据集的PSNR值。结果输出的结果如下所示,我们先看看模型的输出结果,再考虑如何对该模型进行改进。左侧是验证数据集中的整个图像,中间是卷积神经网络的输出提取图像块,右侧是使用标准过程将中间输出提取图像块按比例放大后的输出,这里使用了GIMP的图像缩放功能LR图像(左),重建SR(中),GIMP基线缩放(右)。这个结果肯定不是特别完美:蝴蝶的天线周围有些没必要的噪声,蝴蝶的颈部和背部的毛发及翅膀上有些斑点轮廓,神经网络的输出图像(中)看起来要比GIMP基线输出图像(右)更加清晰。结果分析为了进一步理解模型有哪些优缺点,我们需要从验证数据集中提取具有高PSNR值的图像块和具有低能量度值的图像块。不出所料,性能最佳的图像块是具有较多平坦区域的图像块,而较为复杂的图像块难以准确再现。因此,我们重点
转载请注明地址:http://www.1xbbk.net/jwbls/6338.html